翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

key size : ウィキペディア英語版
key size
In cryptography, key size or key length is the size measured in bits of the key used in a cryptographic algorithm (such as a cipher). An algorithm's key length is distinct from its original cryptographic security, which is a logarithmic measure of the fastest known computational attack on the algorithm, also measured in bits. The security of an algorithm cannot exceed its key length (since any algorithm can be cracked by brute force), but it can be smaller. For example, Triple DES has a key size of 168 bits but provides at most 112 bits of security, since an attack of complexity 2112 is known. This property of Triple DES is not a weakness provided 112 bits of security is sufficient for an application. Most symmetric-key algorithms in common use are designed to have security equal to their key length. No asymmetric-key algorithms with this property are known; elliptic curve cryptography comes the closest with an effective security of roughly half its key length.
==Significance==
Keys are used to control the operation of a cipher so that only the correct key can convert encrypted text (ciphertext) to plaintext. Many ciphers are actually based on publicly known algorithms or are open source and so it is only the difficulty of obtaining the key that determines security of the system, provided that there is no analytic attack (i.e., a 'structural weakness' in the algorithms or protocols used), and assuming that the key is not otherwise available (such as via theft, extortion, or compromise of computer systems). The widely accepted notion that the security of the system should depend on the key alone has been explicitly formulated by Auguste Kerckhoffs (in the 1880s) and Claude Shannon (in the 1940s); the statements are known as Kerckhoffs' principle and Shannon's Maxim respectively.
A key should therefore be large enough that a brute force attack (possible against any encryption algorithm) is infeasible – i.e., would take too long to execute. Shannon's work on information theory showed that to achieve so called ''perfect secrecy'', the key length must be at least as large as the message and only used once (this algorithm is called the One-time pad). In light of this, and the practical difficulty of managing such long keys, modern cryptographic practice has discarded the notion of perfect secrecy as a requirement for encryption, and instead focuses on ''computational security'', under which the computational requirements of breaking an encrypted text must be infeasible for an attacker.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「key size」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.